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lLlo Take BUABNEHHA?

Mwu naBanu BU3HAYEHHS.
biHapHe BUABMEHHA.
[TPUNHATTA pILLEHHA.

lcnuT Ha nopir.



Threshold Detection — Noporose BusiBneHHs
x(t)=s(t)+n(t)




Models of signals and interferences
x(t)=s(t)+n(t)

Models of noise

 \White noise

* White noise with limited spectrum, or
quasi-white noise (QWN)

« QWN with zero carrier
« QWN with carrier



Models of signals and interferences

Models of signals
1. Signal with known parameters — 6epem npocTo BigOMUN CUrHan
2. Signal with unknown initial phase
3. Signal with random initial phase and amplitude

4. Burst of pulses with constant amplitudes and random initial phases
of each pulse (non-coherent burst)

5. Coherent burst

6. Burst of pulses with fluctuated envelope and random initial phases:
6.1 Amplitudes fluctuate independently (fast fluctuations)
6.2 Amplitudes are dependent between themselves (slow fluctuations

Swerling 1 & 3 Swerling 2 & 4



Quality characteristics of radar detection

* The decision must be made at two mutually
exclusive conditions :

A, — Target is present = x(¢)=n(?)+s(2)
A, — Target is absent = x(#)=n(¢)

* The detector must accept one of two hypotheses:
A*, — Target is present = s(t)#0
A*, — Target is absent = s(t)=0



Moxxnusi 4 cutyauil CyMilLeHHA BUNagkoBUX Noain
«PILLEHHSA» | «YMOBW» (“decisions” and “conditions”):

Correct detection (Detection) A* A,
Missing target (Missing) A* A
False Alarm A* A,
Correct undetection A* A,

Some cost can be put in correspondence to every erroneou
decision:

C,,—costof FA; C,, —cost of Missing
Crr = Cy=0



Then, a detection system can be
characterized by the mean cost of
erroneous decisions
(mathematical expectation)

= CUPUA A+ CoyP(Ay )+ CuPUA Ay) + Coo PUA A

r= C01P(A;A1) T C10P(A1*Ao)

Quality of detection is higher, if 7 is smaller

[00TO ONTUMArIbHOK MOXHa BBaXkaTu Taky oOpoOKy, 3a sIKOl 7 = min



From the probability theory it is known:

Joint probability of two events is equal to the probability of
one event multiplied by conditional probability of other eve
under the condition that the first event has been occurred.

Mean cost of erroneous decisions = Average Risk

F = CoP(A)P(4y | 4)+CoP(4)P(4] | 4))

f a radar detector minimizes the Average Risk, such radar
detector is optimal Average Risk = min

P(4/A)=D=1-D P(A |/ A)=F

IMOBIPHICTb MPOMYCKY Liini IMOBIpHICTb XMOHOT TpMBOIYU



Likelihood ratio derivation

We have derived the expression for mean

cost of error as:
r=C,P(4) F'+Cy,P(4)-(1-D)
\ ) \ )

| |
a b
r=aF+b(1-D) Divide both parts by b :
R:E RZEF+(1—D) ﬁ:l :CloP(Ao)
’ b b CyP(4)




R=(1-D)+I,F
R=1-(D-I,F)

From this, it is clear that minimum R will be

achieved when the difference
(D —[,F) ismaximum

(D - I[,F) = max - Weighting criterion



(D - [,F) = max

* The last expression shows that based on the set
of requirements — increasing conditional
probability D and decreasing conditional
probability 7 one should tend to increasing the
weighted difference D -1 F

» The multiplier /, is named weighted multiplier. It
depends on the ratio of error costs (every kind of
errors) and a priori probabilities...

« Now we can build a decision rule on the basis of
weighting criterion.



Transition to multidimensional (discrete)
sample

x(t) A realization of continuous function

{xl, Xy een xn} Multidimensional random values

{tl, lyy ... tn} in points of time
10, T on time interval, T - duration of signal x(z)

So, we work with a sample  X;, X5,... , X,

We must make one of two mutually exclusive decisions:
kK x
A*, or A%,



The decision rule must divide n-dimensional space of
samples onto two subspaces X, and X,. Subspaces X, and X,
are adjacent but non-overlaping.




Likelihood function

* Let us denote the conditional multi-
dimensional probability densities of the
signal sample X =x,x,,....,x, as:

W_(X) -under condition A4, Such conditiona
probability
x(t)=n(t)+s(?) density is namec
Likelihood
W (X) - under condition A4, | function

x(t)=n(t), that 1s, s(¢) =0

W, (X)=W(X/A4) W,(X)=W (X 4,)




Likelihood Ratio

W (X) > A, X =X),Xy5000s X,
wW,(X)
AL
wW,(X)

W (X Ratio of likelihood functions,
A(X) = o (X) or Likelihood Ratio

W, (X)

Likelihood function — is a conditional probability density



Solution of statistical problem of
synthesizing optimal radar detector

. Choice and justification of Optimality Criteria (on the basis of the
features of a concrete task)

. Synthesis of Algorithm — finding a math rule of optimal detection
problem solution

. Implementation of the Algorithm using electronics means and
software — finding a structural diagram of the detector

. Investigation of optimal detector characteristics
. Comparison of optimal and real detectors



Criteria of Optimality

Average risk criterion
|deal observer criterion

Criterion of minimal weighted error
probability

Neumann- Pierson criterion
Wald criterion (Sequential Observation)



Conclusion on the first portion

As a result of this part of the lecture we know:

* Models of signals and interferences (noise)

 Quality characteristics of radar detection

* General statement and solution of the problem of detectio
[A(x)>=A40]

» Criteria of Optimality

* Next step is — the synthesis of algorithms and structural
diagrams of optimal detectors for specific models of signa



Binary detection of a known signal
x(t) = A-s(t)+n(?)
A=0 (situation A,
{AZI (situation A,)

n(t) — Gaussian white noise

X, =1, +5, k=1,2,..,N

Conditional probability density of k-th readings of input oscillation x(7)

w, (xk) at A=0 - Gauss with zero mean
Wsn (xk) at A=1- Gauss with mean = S



We need w,(x,) and w_(x,) to calculate the
ikelihood ratio

In order to find joint multi-dimensional
probability densities of a sample

X = {xl, Xy oo xn}

we should know statistical relationship of the
processes in the points of the sample.

These points are spaced by the intervals

1
, At =—
- At 2f

Statistical relationship is described by CF, which is
equal to zero in the points of the sample (readings).



In other words, the readings in the sample x,, x,, ..., x,
are statistically independent. That is why the joint
multi-dimensional PDF is equal to the product of PDFs

of each separate values x,, x,, ..., x, :

N N 2

W(X)= : exp| — Al A=0, situation 4

n p ) 0
27O ' 20

N
an (X) = ( 1 j exp(— i (xk _ Sk)2 ] A=1, situation Al

2
27O - 20

Ny
2At

. . . 2
Variance o2 in both cases is the same, and o™ =N,f__ =



W (X)

A(X) =
,(X) .
A(X)=exp —Z
| k=l
W _
(X)) =exp S ;(2xksk — S )_
At -
A(X) =exp —Z(2xksk — S
RAf= il
R 2
MX) =exp| —— > s;At+
=




Limiting process to white noise case

S —> O At —> 0

lim )" s;At = [ s*(t)dt = E

At—>0

o0

lim > x,s,At = j s(t) x(¢) dt

At —>0 k o

T

z= Ojos(r) x(t)dt = j s(?) x()dt

0



Final form of the Likelihood Ratio for known

signal detection
E 2z

Alx(t)] = e Mg M

One can see that A is a monotonous function of
correlation integral z, which can be calculated, using the
received realization x(¢)

Comparison of Likelihood Ratio A with threshold A, is
equivalent to a comparison of cor. int. z with
corresponding threshold z,



Threshold for Correlation Integral

Condition A(X) 21, isequivalentto InA=In/

£ 2z B 25
A=e M. Ay=e "0.e
E 2
InA, = | o whence:
NO NO
E
Z, =%lnlo-|——
2 2




Synthesis of Optimal Signal Detector

 Likelihood Ratio

» Correlation Integral

» Correlation Recelver

« Comparison with threshold
* Decision Making

____________________________________________________________

X(t) .z | Threshold

z>2z,= YES

— | Multiplier » Integrator . —
; T i device 2<z.= NO
R Correlator ! I
s(t) .



Physical interpretation of correlation processing

Cutyagus Ag\ ‘mu-'l'quu; A,
Expected 0)(“ dﬂ ¢Mhl€ S+ S 6)
oscillations K onedaArUSA S ‘E’) _AUQU—, %
X&) =Nn(t) +S#%)
Received ﬂpu HUMaqe M b€
oscillations | ko pedaHUN X [{)

T
S({') X(t)=nH) ${f)+§2f)

Result of P25 N6TAc hePe
multiplication | M HO)Ke HMﬁ
s(H)x(t) Y Uit Sit) x(t)

| KLoppesayuopn b |
Correlation | v 2L/

integral z Z = S S(t): x(t)dt

i o A




Thus, at the output of the correlator we have:

T
z (T)= Ion(t)s(t)dt in case of noise at the input

In case of mixture noise

2,(T) = [[s(t) + n(D}s(0)dt  ang signal s

Important! : £, and <, are random values. That is why
exceeding (or non-exceeding) the threshold occurs with

probabilities less than unity.
Decision making rule:

z(T) > z, = A, Target is present
z(T)< z, = A, Target is absent



* Probability density distribution of random
value Z (£, incaseA, and £, in

case of A;) and the value < of the

threshold define the probabilities of
correct and erroneous decisions

. PDFs W,(2) and W,,(2)
2
Z

2
20;

1
w (z) = \/EJ e



: 2
We need to know the variance O,

ol =M{z’} =1z
- j n(t)s(t)dt - j n(t)s(t)dt = j j s(8)s(tn(t)n(t)dt dt
7? = j j s(2)s(t) - n(H)n(f)dt dt

n(t)n(t) = 05@ £) [ o(rydr=1
» 2 N 2 _ NE
ol =z _70_[05 (£)dt = ;



This variance o, derived by us,
defines completely the curve w. (z)

A W::(i)
1 /m(E) W, (2)=W, (z-E)
' \
. -
~ “m-!!%k | ~ ‘
‘OO O +——+ZO E = 2
Ezjsztdt 2. g-E.\|2E Z
) (7) 7?@"’3‘ G \ - A

It is convenient to graduate the axis of abscissa in relative values

£ _ /2_E - detection parameter equals to SNR on
NO

1= ; voltage at the output of optimal detector.

z



Probabilities of Detection and False Alarm
Changing the threshold changes both D & F.

Operating characteristics of a radar detector — is a
dependence D of F at given SNR ¢?=2E/N,,




Probabilities of Detection and False alarm

1 g, —threshold (relative threshold level)
g —signal —to—noise ratio q= . |—
No
1
D=—{1-®(q,~4q)]
N, E
—1In/, +—
Z, (2 o 2) N.E N E . N,E
qdo = — — In ZO + GZ =
o N,E 2 2 y)
2

o 2
D(&)) = \/;_ jexp(—%)dé - probability integral




Detection of a signal with a random
initial phase

» At the output of the multiplier the amplitude will be
proportional to the phase difference between phases of a

signal x(7) and the reference voltage s(r), that is, a result o
the multiplication is a random value.

» Two parallel channels are used in order to eliminate a
randomness of changing output voltage, and the reference
voltages in these channels are 90° phase-shifted.



Detection of a signal with a random initial
phase

- U, [ 41 Square
° Det

T z? _ |2 2
x(t)| S =Acoswt 1 ZENA T

o = Zz(module) Thresholder —

s, = Asinwt : T
2

N IT 2 Square z
U2 ° Det 0

U =k COSY/ z, =k, COSY/

2 2 2 2 2 - 2
z° =2z +z; =k;(cos” w . +sin" .. ) = Const

U, =k, sinl,ydif z, =k, sinz//dl.f



Probabilities of Detection and False Alarm

2
A 0 w, (2) = %exp(— “ - j Rayleigh
o 20
2 2 G lized
A 7w (2)= ieXp Ttk 7 zE RZQZ?ZAZG
sn 0_2 20_2 0 0.2 (Rice)
F = jwn (z2)dz = I w. (q)dq D = jwm (z2)dz = I w,, (q)dq
Z do 2 90
qdo = =1 q = -

O, O,



Detection of a signal with random initial
phase and amplitude

This case corresponds to Model 3:
s(t) = aA(t)cos|w,t + p(t) + ¢, |

Random quantity o is distributed by Rayleigh law
w(@) =L exp(—-)
o’ P 20"

Random quantity ¢, — uniformly distributed

w(g,) =1/(27)
Joint PDF (independer11t random quantities):
o o
w(a,p,) =—- —exp(—
( (DO) 272_ 02 p( 202)

Likelihood radio for known nal
1) ol B+ 29
NO NO @




In order to find Likelihood Ratio for this case we
must;

Calculate energy of the signal as function of random
amplitude E(a)
Calculate correlation integral as function of . and ¢, z(a,

(Po)
Substitute these values into Ex. )

A(x,a,¢,)

Average the expression obtained over the random
parameters o and o,

A(x) = [[ ACx, @, (@) () dad g,




Result

* The Likelihood Ratio for the signal with random
initial phase and random amplitude is a
monotonous function of MODULE value of
correlation integral z similarly to the case when
only initial phase is unknown.

 The structure of the detector for Model 3 is the
same as for Model 2. Only optimal threshold is
different.

* Method of calculating Probabilities of Detection
and False Alarm is also similar.



Probabilities of Detection and False Alarm

2
Z Z .
AO w, (Z) — —2€XP — : Rayleigh
o 20
2 At E=0 -
A] w, (Z) — 2z exp| — ‘ Rayleigh
207 +E° 207 +E°
( q_g ) 2
D =exp| — 2 > F:exp(_%)]
1+4 g, =22 2E




[1I0THOCTM BEPOATHOCTEN KOPPENSLUMOHHOIO MHTEerpana ansg curHana co cryyvyanHbolv
aMnInTygyMmum n HadarnbHbIMM doa3zamMu.

[Mpn E=0 nmeem cutyaumo AO - curHana Het. Torga nosiydaeTca YmcTbln Penen

2
2z -7
wsn(z,E, o) = —2-exp > >
2.0 +E 2.0 +E z:=0,0.01..15
0.8 | |

Wsn(z,7,1)06

wsn(z,5,1)

wsn(z,3,1) 0.4 n

wsn(z,0,1
( )0.2 -

0 s




OTHOCUTENbHbIE BEMNYUHBI

q = 2-E qo := z0 5
=T c
No 27 ~Z
wsn(z,q) = N exp N
21 +q 2-1 +q
0.8 | [
0.6 -
wsn(z, 0)
wsn(z,1.5)
wsn(z,3) 04 h
wsn(z,5)
0.2y -

15
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Operating characteristics

F :=0,0.001..1

D(F,0) 0.8

D(F, 1)

D(F,?2)
D(F,

D(F, 10)

1

0.6
3) 04

0.2}

0




Detection Curves

/ \ 70" °
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Detection of a pulse packet (burst of pulses)
Coherent burst with known parameters

« Known burst can be considered as a

completely known single signal of a
complex shape, which is defined by the
shape of a given packet of pulses. Model 5.

* |Itis a special case of the Model 1.
 All formulas obtained earlier are valid. But:

E=|s*(t)dt E:iEl.
i=1

E. is energy of i-th pulse



The structure is the same (correlation receiver) but one
should apply a reference copy of signal as the packet of
pulses:

s(t) = i A(t)cos|wt +o(t)+ @, ]

Por = P =+ = Pon t=ty,.,t,+T
(integration from 0 to 7)

Maximum value of the response will be at time
T, in the moment of the end of the packet

All characteristics of detection will be the same as before, if the
energy K is the energy of the whole packet of pulses (burst)



Detection of a pulse packet (burst of pulses)
A burst of pulses with amicable fluctuations
* |n this case there are no fluctuations in the limits of the
packet but impulse signals fluctuate from burst to
burst. Model 6.2.

* That means that the amplitude of pulses in the burst is
random (unknown), but it is the same for all pulses of
given burst.

» Such signal can be considered as a single signal of
complex shape with unknown amplitude. If initial phase
IS also random, we can reduce this case to the case of
random amplitude and phase. (Again 2 quadrature channels)



Z
Ul JT ! Square
0 Det

2
2

S I z|

] ,/212 + Z; Thresholder

fT 2y Square z 0
U2 ° Det

s(0) = ) a A(t)cos[@, 1+ @(t) + @y, ]

In case of amicable fluctuations &,,..., &), are related between
themselves but unknown.



Detection of a pulse packet (burst of pulses)
A burst of pulses with independent fluctuations

 In this case, the model of the signal is almost the same, but

a,,..., &, are fluctuated randomly and independently in the
limits of the burst.

* For the k-th pulse, the likelihood ratio can be found similarly
as for the single signal with random amplitude and phase

N z?
—exp| ‘ ]
E, + N, Ny(E, + N,)

« At independent fluctuations of pulse amplitude, the likelihood
ratio (LHR) for the whole signal can be represented as a
product of LHRs for separate pulses

A(x) = Hﬁk(X)

A (X) =




A burst of pulses with independent fluctuations

* As a result of multiplication, there will be a sum of
responses on each pulse of the packet in the index
(exponent of power). In this case one should calculate

Z(T) = Zzl.

 Similarly to the case of a single signal, the response Z(T')
will be proportional to the energy of the input signal, that
IS, the packet of pulses in particular case.

* The result should be compared with the threshold z, .



Detection of signals with unknown
arrival time

* If the time of signal arrival is unknown, the
correlation integral is a function of the unknown

time 7 g/
2(r+T) = j x(£) s(t—7)dt

* |tis necessary to apply a copy of the expected
signal to the multiplier synchronously and in-
phase with receiving signal. But we do not know
the time delay 7 = 7, in advance !!!

» So, we need many copies s(?) that are shifted
relative to each other by the interval, defined by
the range resolution.



x(1)

Ll

S(t-t,1)

s(t-t ;)

1

s(t-t,,)

z(ty,)

z(1 )

Thresholder

Decision
1-st channel

’I‘ZO

Thresholder

Decision
>

2-nd channel

p

20

Z(1 )

Decision

Thresholder —>

A

20

m-th channel



* |In case of random signals —
correspondingly quadrature structure.

* In fact, we have proceeded to the
observation over time in the limits of

tdmin ZLa’max

 However, in addition to unknown time
delay, it can be also an unknown Doppler
shift.



Detection of signals with unknown
frequency shift

* In this case, we should proceed also to the
observation over Doppler frequency in the

limits of F F

vmin °°° Vv max

* In other words, we can build multi-channel
correlation schemes in time domain and in
frequency domain

 For each k-th temporal channel many
frequency channels can be created.



x(1)

—>

S(t-ty . Fyy)

—

S(t-ty . Fyy)

Thresholder

Decision
kl channel

S(t-ty . Fy) !

20

—

Thresholder

Decision
k2 channel

p

S(t-ty . Fy,)

20

>

Thresholder

Decision

kn channel

A

20



 Number of channels: n*m; m=(tmax-tmin)/At;
n=(Fmax-Fmin)/AF;,  At=24R/C;  AF=24V/A

» Correlation schemes of radar detectors
require big number of channels in order to
detect signal which arrive at different time
(to scan all range from R min to R max).

* That is why in many cases it is preferable
to use radio engineering devices which are
invariant with respect to arrival time.

* In this case we get a possibility to use a
single-channel schemes of detectors



Matched filters

* The notion of MF is based on the
knowledge of linear radio engineering
circuits or electrical circuits and signals.

* Response y(7) of a LF on the impact x at
a point of time ¢ is defined by Duhamel
integral:

y(t)= [ x(0)h(t-r)dr

h(t) is pulse-response characteristic of
the circuit (LF). X ()



Demand: the function y(¢) should be equal to the Cl z

to within a constant factor k&, at the point of time /=7,
that is, at the time of finishing the useful signal, when

W(T) = [ x(@©W(T - 1)dr
We can substitute 7 instead of 7
W(T) = [ (O - 1)ds

Thus, in order to k,-s()
satisfy the equality y(T) — kOZ

zZ

we need A(T —1) =k, - s(t) !S(t) x(t)dt

(Lower limit of int. can be 0 because signal s(t) begins in t=0)



Moreover, the conditon  A(T —t) =k, - s(¢)
s equivalentto | () = k,-s(T —1)

Proof:

r—t=g, t=T-¢;
h(g)=ky s(I' —¢)

Thus, the cross-correlation function at the
time of the end of the useful signal is
produced at the output of the linear filter with
the impulse response, which is a mirror image
of the desired signal (up to a constant factor).



Linear filters are described by impulse response and
frequency response

Y(t) = jTOO X(OW(T —t)dt = j“; X(O(T —t)dt

Formula of filtering in the time domain, or a convolution integral

y() =[S (HK(f)e”df

Formula of filtering in the frequency domain



Impulse response and frequency
response are related by Fourier
transforms

h(t)= [ K(f)e”"df

K(f)= Th(t)e‘fz’f’dt



Definition of Matched Filter in Radar

« Matched filter with respect to the expected signal is a
filter that takes into account the shape of the signal
and is capable to delivering on its output consistently
over time the values proportional to the correlation
integral at different time delays of the signal.

» Math: V(I +1t)=C:z(1)
with C — factor of proportionality; 7 — delay in the filter itself.

* The farther the target, the greater the delay of the
reflected signal, so, the response of the filter to the
signal is later.

* The delay T in the filter itself is necessary to account
all information that arrives during signal duration.



Impulse response of a MF

Ny (2) = ko - (T = )

Impulse response of a MF is constructed
by mirroring the expected signal

A sh




Frequency response of a MF

can be found from impulse response:

Ky () =k | s(T—t)e”*

Change of variable t=7-71 leads to:

Kur(f)=kS,(f)e "™

Frequency response of the matched filter is
proportional to the product of the complex conjugate
value of the spectral density of the expected signal

and the factor of the signal delay in the filter




Amplitude-frequency characteristic of MF

corresponds to the amplitude-frequency
spectrum of the signal

‘KMF (f)‘ — ko Sx(.f)‘

S.(N) | |Kue ()

fkf




Phase-frequency characteristic of MF
corresponds to the amplitude-frequency spectrum of the signal

arg Ky (f) =—argS,.(f) - 24T

« Phase response consists of two components:

- the argument of the function S_(f), which is reverse in respect to
the phase spectrum of the signal;

- a phase factor e72v7,

* The first one provides a summation of all frequency components
'In phase’, in the point of time T, when the signal is ended.

* The second factor corresponds to the delay T in the filter. So, at
time T there is a maximum value of the response, which is

numerically equal to the signal energy.



At the output of MF, the peak voltage of the signal DOES NOT
DEPEND on the shape and bandwidth of the signal:

@ “df =k, j S2(t)dt =k, E

E — signal energy on the unlty resistor
 Mean square of noise voltage (mean power )

=k | NOOWK () df

N()FNy2, if -oo<f<co. ‘KMF(f)‘ (f)‘ SO:
[ Kl dr =k J_w\KMm af =ICE
Thus: y,f = kgE& Hence peak SNR is: Vs peak

2 Vi



Peak SNR

It coincide with parameter of detection |

yspeak .

m,  =q=S8NR(])

— coefficient of discrimination (required power
SNR per single pulse); if losses are absent,

But losses in real circuits and devices should be taken into account.



Coefficient of discrimination — the required SNR

n
m,.—4¢- H ¢; -in case of detecting a single signal
i=1

n
m, = i : H o, - In case of detecting the coherent
N 5 packet of N pulses

g is defined on given D and F;
o, takes into account different kinds (i=1, ...,n) of losses.

n

n
L osses totally: Hai or in dB: ZaidB
i=1 i1

m, = SNR(1)




Sources of losses a;

Loss in detector

Detuning

Attenuation in Tx and Rx lines (=2 dB)

_oss in antenna (antenna pattern) (=1.8 dB)
_oss due to fluctuating target RCS

_osses due to mismatch (quasi-optimal filter)
CFAR loss (if any)

MTI loss (if any)

Losses related with operator (if any)
Miscellaneous additional losses




Matched filter for a single video pulse

s(1)
Signal 4, <= )
s(t) =+ ]2,
0, |f|>=
\ 2 _Z Z
2 2
Action of delta-function on an integrator
5(1) J- 0, att<0 t ot £ volt
— unit step of voltage
1(2), att >0 P J
A rectangular pulse is a difference of unit steps
1(t) 4
0 > !
1(t-T) A
0 i > !
() ~1(1=T) A '
0 > 1




s(t) J'T

At =T

s(t)

@i(t)

AL
z(1)
z(T)
,////////\\\\\\\\\
0 T 2T



Matched filter for a single RF pulse

Signal oo T 1 :
5(t) = - ot ‘432 w o MR
: 0 ‘4>§ YUV
11111 — —
O— = f




Quasi-optimal filtering

* |In practice a quasi-optimal filters are often used.
* |t can be done by optimization of filter bandwidth
* In case of band-pass filter (rectangular)
Af1=1.37, and SNR_ _,=0.83¢
that is, only 17 % will be lost (=1.2 times)

Af = B — Bandwidth of the receiver with quasi-optimal filter



Matched and Non Matched
(Quasi-optimal) Filters

Input Pulse Filter Shape Optimum | Loss in
Shape Af-1 SNR (dB)
Rectangular Rectangular 1.37 0.85
Rectangular Gaussian 0.72 0.49
Gaussian Rectangular 0.72 0.39
Gaussian Gaussian 0.44 0
Rectangular | Single tuned circuit 04 0.88
Rectangular | 2 cascaded tuned ccts | 0.613 0.56
Rectangular | 5 cascaded tuned ccts | 0.672 0.5




Let’'s go back to Matched Filter

* |t can be shown that the amplitude of the signal at the
output of MF determined the module value of the
correlation integral.

* It is necessary at optimal detection of a signal with
random Iinitial phase (amplitude and phase).

* That is why, a MF for a signal with arbitrary amplitude
and initial phase can be used for detection signals with

any initial phases and amplitudes.




» |n order to proceed from instantaneous values of voltage
to the amplitude value, the structure of MF detector
includes the envelope detector

z(1)

"
Detector | To threshold

or measuring
device



Pulse Trains

> The relationships developed earlier between ¢ = SNR, D and F
apply to a single pulse only.

> As a search radar scans past a target, it will remain in the beam
sufficiently long for more than one pulse to hit the target. The
number can be calculated using the following formula:

07 0
_QA 6w

n
where n, — Hits per scan
0@ — Azimuth beamwidth (deg)
0, — Azimuth scan rate (deg/s)
®,, — Azimuth scan rate (rpm)

> For a long-range ground based radar with an azimuth beamwidth
1.5°, a scan rate of 5rpm, and a pulse repetition frequency of 30H:
the number of pulses returned from a single point target is 15.

> The process of summing all these hits is called integration, and it
can be achieved in many ways.

m



MF for packets of pulses

» Coherent burst
— MF for coherent burst of equal rectangular pulses
— What will happen, if MF is substituted by quasi-optimal one?

— What we should do, if the envelope of the packet is not
rectangular?



MF for packets of pulses

* Non-coherent burst
— Weighted postdetection integration
— Week non-fluctuated packet (square detector)
K=A7
— Non-fluctuated packet of big amplitude K.=4.
— Fluctuating packet




Effect of Integration

&
b5 Nolse
on PDF’S %" l Target plus Noise
H
|
> Note that though the mean . A
values of both the Noise and Noise
Signal+Noise remain unchanged, > p Target plus Noise
the variance decreases $ Deprenyp L
> This results in a reduction of the : | i |
required single pulse SNR, or m;, sl L :
to achieve a particular D and F / :\ I
| |

M M-
Ampli_tude (Voltage)

Probability density functions of noise and target-plus-noise (a)
before integration and (b) after integration.



Comparison of coherent and non-
coherent integration

*
integrator
x(1)
Envelope
Integrator



Zk . Perfect coherent and non-

i< coherent Integration
i=1
10°

Perfect

102 Coherent (N)

Non-Coherent
(V)

10

I 10 102 103 10



Real Integration Efficiency

> With integration, the required SNR decreases as a
function of the number of samples integrated

> However as the single pulse SNR decreases, detector
losses increase which result in reduced integration
efficiency

SNR (1) In case of incoherent

integration

Ez(n) —

where: E(n) — Integration efficiency

SNR(1) — Single pulse SNR required to produce a specific P if
there is no integration.

SNR(n) — Single pulse SNR required to produce a specific P if
n pulses are integrated perfectly.
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Integration Loss
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Integration Loss as a function of n, number of pulses integrated



Digital Processing

« Considered general theory is completely suitable
for both analog and digital signal processing.

* However the Filter itself normally is synthesized
on the basis of spectral approach using FFT.

 MF should deliver at the output, a signal
correspondent to correlation integral. So, the
algorithm can be built in accordance with the
following diagram.



A(t)coso(t) Z,(n)-Z,(n),
—> ADC =~ Z,(n) n=01.N-1
—Ak)> FFT Multiplier IFFT
— ADC —/
A(t)sing(t)

1 Z,(n)[, n=01..N-1
Sequence of complex samples

encoded digitally
{A(k)}, k=0]1..N-1

Sequence of spectral Olnto_me f
coefficients algorithm o
(Z.(n)}, n=01..N-1 eliminating

random phase



Universal filter with tapped-delay line

»  Tapped-delay line (N-1)At [<
Input 1 Input 2

(N-1)A1

s(t) = ihl.sl(t—iAt)
i=1 At — o© s, = o(1) s(t) = h(t)

Transversal filter

HepekypcuBHuu inbTp, TpaHcBepcanbHuUM ¢inbTp, NpebiHvyacTun QinbTp



Compression of wideband signals

» \We could see that MF distorts the shape of the signals buf
maximizes SNR.

* |n case of WB signals the distortion leads to USEFUL
EFFECT of COMPRESSION.

» |t will be considered in separate topic.



Features of requirements to F and D

1. First feature is related with Great number of resolution
volumes

2. Second feature is related with Cyclicity (recurrence) of
surveillance



Influence of number of resolution
volumes

 |If there is m RVs, then aggregate conditional
probability of Correct Undetection ™ in m volumes is

F, =(F)’"=(1—F)m
F =1-F =1-(1-F)"

 Expand into a Taylor series

(1-F)" zl—mF+%m(m—1)F2—%m(m—l)(m—2)F3+

If mF<<1 F ~mF F~ F—~10—4 107"

m



Influence of cyclicity (recurrence) of surveillance

« Suppose that optimal signal processing within the
cycle of observation is supplemented by the
intercycle processing according to logics “1 of k™.

szl_(l_E)k ~ kF

D, =1-(1-D,)"

D grows quickly if at increasing k!



False Alarm Rate

Another important concept in detection is FAR,

False Alarm Rate. FAR is the number of times a false alarm is
expected to occur per second.

It depends on the F and the number of tests per second.
Stated mathematically:

FAR = F x (number of tests/second)

Note: a test could be a scan, a dwell, etc.



False Alarm Rate Stabilization

It is desirable that the system automatically
adjusts its S/l threshold when there is widely
varying interference (e.g., ground clutter). Then
the FAR stays constant.

This process is called Constant False Alarm Rate
(CFAR), and it is used majority of modern
radars.



Constant False Alarm Rate

® As was shown, the false alarm rate is very sensitive to the
detection threshold voltage.

® Component aging and changes in background mean that a fixed
detection threshold is not practical.

® Adaptive techniques that maintain a constant false alarm rate
irrespective of the circumstances are called Constant False Alarmr
Rate (CFAR) processors.

® For aircraft this is not a problem as the area around the target is
generally clear, and good background statistics can be obtained.

® For ground targets where the background is determined from
clutter statistics, the terrain may not be homogeneous, and so
additional processing is required.



Change the threshold to keep False Alarm
Rate CONSTANT

\Threghod

Targets

-
AN




Constant False Alarm Rate (CFAR)

There are two common methods to achieve CFAR: Cell
Averaging and Clutter Mapping.

Cell Averaging

When a running average is made of the range cells before and
after the cell of interest. This running average is then
multiplied by some factor and used as the threshold.



Cell Averaging CFAR Options

» Area CFAR used in imaging or
scanning systems

>Range CFAR used by pencil beam
radars

» Azimuth CFAR perimeter protection
radar

AREA
N FORMING
L= CFAR
ESTIMATE
CELL UNDER
TEST
RANGE
AZIMUTH CELLS
{a)
. CELL UNDER
WE=a
L \\_
RANGE ™\ CELLS FORMING
L CFAR
.-r"/
s ESTIMATE
%
AZIMUTH CELLS
(b)
CELL UNDER
" TEST
S5 _.-&é
RANGE

™ CELLS FORMING

CFAR

ESTIMATE

AZIMUTH CELLS
(e)

Range-azimuth cells used tor (a) area CFAR (b) range-only
CFAR, and (c) azimuth angle-only CFAR.



CFAR losses

®* CFAR losses decrease with the number of cells
used from 3.5dB for 10cells to 0.7dB for 40cells

® CFAR losses decrease with pulses integrated for a
10cell average with 10 pulses integrated it is 0.7dB
decreasing to 0.3dB for 100 pulses



CFAR. Cell Averaging

Averager — Multiplier

Cell of — Output

Interest|

Comparator

Radar data
clocked in




Compensating for Non Homogeneous Clutter

<
* DETECTION
INPUT scUARE-LAW | as DECISION
—{ Sy COMPARATOR .
ME CECE ] 1 i 1 L ME
Tl
5
Qs s
_SELECTION LOGIC P i THRESHOLD MULTIPLIER
v U
U+V . CACFAR I, I . CA-CFAR
& =< MAX (U, V), GO-CFAR SELECTION To =4 Tgo . GO-CFAR
MIN (U, V. SO-CFAR LOGIC . . SO-CFAR
(.

CA=cell averaging
GO=Greater of
SO=Smallest of



Detection on the background of
non-Gaussian interferences

For example, stationary nonwhite noise. It is characterized by
nonuniform spectrum N(f).

In this case instead MF we can introduce the notion of
OPTIMUM filter, which takes into account not only
characteristics of the signal, but characteristics of noise as well.

Earlier: N(f)=N,=const
Now:  N(f) —is arbitrary function



Frequency response of the
OPTIMAL FILTER

kS (e "™ Kyr(f)

RanlS)= N(f) N(f)

Matched Filter is a special case of the
Optimum Filter at N(f)=const



Physical interpretation of optimal filtering

« Optimal filter can be represented as a cascade
connection of two “partial” filters:

— K(f) — K()) —

* The first one makes the noise to become white
(“whitewashing” filter), and the second one is
matched with the signal, converted by the first filter.

» Optimal frequency response K, (f)K,(f)

* It is "whitewashing” noise, suppressing spectral
components with great spectral densities of noise.



A priori uncertainty

* Two classes of the prior uncertainty:
— Parametric

A model of PDFs of signals py(S) and

interferences pv(n) are known; just parameters U/
and V are unknown (vectors)

— Nonparametric

Models of PDFs pﬂ(S) and P, (71) are unknown.

This is the most difficult case, but normally

something is known (not complete uncertainty, but
partial uncertainty)



Approaches to overcome a priori uncertainty

» Bayesian approach
— Strictly Bayesian
— Partially Bayesian

* Non-Bayesian parametric methods

* Non-parametric methods
— Sign algorithms
— Rank algorithms
» Adaptive optimal algorithms

» Adaptive non-optimal algorithms (Robust)



Bayesian approach
* Suppose that unknown parameters ¢/ and v

of PDFs 7,($) and p, (1) can be interpreted as random values, ar
their PDFs are exist.

For signal and noise P,(s) and p, (") are considered as
CONDITIONAL PDFs:

pﬂ(s/,u) p,(n/v)
u=1{u,ty,.....; and v={v,v,,....} - vectors
* Then two statements of the problem are possible.
. Strictly Bayesian: PDFs P (1) and P (V) are known.

In this case we can write joint PDFs and PDFs for signal and
noise:




p(s, 1) = p(s/ u)- p(u)
p(n,v)=pn/v)-p(v)

p(s) = Q p(s/ wp(u)dp

p(m) =, p(n/v)p()dv

* There are no unknown parameters anymore. We have come to
the problem with completely known distributions. Now it is
possible to synthesize optimal detection algorithm.

* There are no principal difficulties but computing difficulties can
be very significant.



Partially Bayesian: PDFs P (&) and p (V) are
unknown.

We can apply, for example Bayesian postulate
that a priori distributions are uniform distributions.

p (1) =const, peQ)
p (v)=const, vell,

This supposition characterize the maximum prior
uncertainty relative to parameters 4 and v .

Minimax!



Non-Bayesian parametric methods

These are all those parametric methods that do
not require Bayesian suppositions relative to
unknown parameters 4 and V of distributions
for signals p(s/ 1) and noise p(n/v) .

One of the approaches consists in substitution
into these distributions, instead of unknown
parameters X and V , their estimates / and v .

The estimates should be obtained using data of
observation.

Thus, this approach leads to adaptive algorithms.



Non-parametric methods

These class of methods is applied to overcome
non-parametric prior uncertainty. The basis —
non-parametric methods of math statistics.

Concrete applications are related basically with
using SIGN and RANK statistics, which have
some invariant properties.

Letus X =(x,,X,,....,X, ) isinitial
sequence of observed values.

Sign Statistics is a vector:

signX = (Sign x,,Sign x,,....,Sign x,,)



(1, £>0
sion& =10, £=0
-1, <0

It appears that distribution of value signX is invariant in respect to
initial distribution of receiving signal X independently on p(X)

1 N
pisigngy = (—j
2
Based on this property, the algorithms are designed that operate
with sign functions instead of initial signals. Of course the quality i:

worse than in case of parametric uncertainty.



« Rank Statistics. In this case the observed values

X =(X], Xy 5y X))
are arranged in the order of increasing.
X, 2X; 1> ]
Then instead of values X, we use the numbers of

corresponding components in variational series
(Ranks).

Invariant properties of rank statistics are even
stronger than in previous case.



Robust approach

» Robust (stable) algorithms are build without evident
estimating of non-informative # and v parameters.



