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Signal detection



Що таке виявлення?

• Ми давали визначення.

• Бінарне виявлення.

• Прийняття рішення.

• Іспит на поріг.



Threshold Detection – Порогове виявлення

)()()( tntstx 



Models of signals and interferences 

Models of noise

• White noise

• White noise with limited spectrum, or 
quasi-white noise (QWN) 

• QWN with zero carrier

• QWN with carrier

)()()( tntstx 



Models of signals and interferences 
Models of signals

1. Signal with known parameters – берем просто відомий сигнал

2. Signal with unknown initial phase 

3. Signal with random initial phase and amplitude

4. Burst of pulses with constant amplitudes and random initial phases 
of each pulse (non-coherent burst)

5. Coherent burst

6. Burst of pulses with fluctuated envelope and random initial phases:

6.1 Amplitudes fluctuate independently (fast fluctuations)

6.2 Amplitudes are dependent between themselves (slow fluctuations)

Swerling 2 & 4Swerling 1 & 3



Quality characteristics of radar detection

• The decision must be made at two mutually 
exclusive conditions :

A1 – Target is present  x(t)=n(t)+s(t)

A0 – Target is absent   x(t)=n(t)

• The detector must accept one of two hypotheses:

A*1 – Target is present  s(t)0

A*0 – Target is absent   s(t)=0



Можливі 4 ситуації суміщення випадкових подій
«рішення» і «умови» (“decisions” and “conditions”):

1. Correct detection (Detection) A*1 A 1

2. Missing target (Missing) A*0 A 1

3. False Alarm A*1 A 0

4. Correct undetection A*0 A 0

Some cost can be put in correspondence to every erroneous 
decision:

C10 – cost of FA;    C01 – cost of Missing
C11 = C00=0



Then, a detection system can be 
characterized by the mean cost of 

erroneous decisions
(mathematical expectation)
* * * *
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Quality of detection is higher, if         is smallerr

* *
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Тобто оптимальною можна вважати таку обробку, за якої minr 



From the probability theory it is known:

Joint probability of two events is equal to the probability of 
one event multiplied by conditional probability of other event 
under the condition that the first event has been occurred.

Mean cost of erroneous decisions = Average Risk

If a radar detector minimizes the Average Risk, such radar 
detector is optimal             Average Risk = min

* *
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Імовірність хибної тривогиІмовірність пропуску цілі



Likelihood ratio derivation

We have derived the expression for mean 
cost of error as:
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FlDR 0)1( 

)(1 0FlDR 

From this, it is clear that minimum R will be 
achieved when the difference 

is maximum)( 0 FlD 

max)( 0  FlD - Weighting criterion



• The last expression shows that based on the  set 
of requirements – increasing conditional 
probability D and decreasing conditional 
probability F one should tend to increasing the 
weighted difference

• The multiplier l0 is named weighted multiplier. It 
depends on the ratio of error costs (every kind of 
errors) and a priori probabilities…

• Now we can build a decision rule on the basis of 
weighting criterion.

max)( 0  FlD

FlD 0



Transition to multidimensional (discrete) 
sample 

)(tx

 nxxx ...,, 21

 nttt ...,, 21

],0[ T

A realization of continuous function

Multidimensional random values

in points of time

on time interval, T - duration of signal x(t)

So, we work with a sample nxxx ,...,, 21

We must make one of two mutually exclusive decisions:

A*1 or    A*0



The decision rule must divide n-dimensional space of 
samples onto two subspaces X1 and X0. Subspaces X1 and X0

are adjacent but non-overlaping.







n
X1

X0



i

*
11 AXX  *

00 AXX 

xn

xi x3

x2

x1

nxxxX ,...,, 21
Sample



Likelihood function

• Let us denote the conditional multi-
dimensional probability densities of the 
signal sample                               as:

- under condition A1

x(t)=n(t)+s(t)

- under condition A0

x(t)=n(t), that is, s(t) = 0

nxxxX ,...,, 21

)(XWsn

)(XWn

Such conditional 
probability 
density is named 
Likelihood 
function
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Likelihood Ratio
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Solution of statistical problem of 
synthesizing optimal radar detector 

1. Choice and justification of Optimality Criteria (on the basis of the 
features of a concrete task)

2. Synthesis of Algorithm – finding a math rule of optimal detection 
problem solution

3. Implementation of the Algorithm using electronics means and 
software – finding a structural diagram of the detector

4. Investigation of optimal detector characteristics

5. Comparison of optimal and real detectors



Criteria of Optimality

• Average risk criterion

• Ideal observer criterion

• Criterion of minimal weighted error 
probability

• Neumann- Pierson criterion

• Wald criterion (Sequential Observation)



Conclusion on the first portion

As a result of this part of the lecture we know:

• Models of signals and interferences (noise)

• Quality characteristics of radar detection

• General statement and solution of the problem of detection 
[(x)>=o]

• Criteria of Optimality

• Next step is – the synthesis of algorithms and structural 
diagrams of optimal detectors for specific models of signals



Binary detection of a known signal

x(t) = As(t)+n(t)
A=0 (situation A0

A=1 (situation A1)

n(t) – Gaussian white noise 

Nksnx kkk ,...,2,1, 
Conditional probability density of k-th readings of input oscillation x(t)

)( kn xw at A=0 - Gauss with zero mean

)( ksn xw at A=1- Gauss with mean = sk



We need              and                to calculate the 
likelihood ratio

In order to find joint multi-dimensional 
probability densities of a sample 

we should know statistical relationship of the 
processes in the points of the sample. 

These points are spaced by the intervals 

Statistical relationship is described by CF, which is 
equal to zero in the points of the sample (readings).
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In other words, the readings in the sample x1, x2, …, xn

are statistically independent. That is why the joint 
multi-dimensional PDF is equal to the product of PDFs 
of each separate values x1, x2, …, xn :
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Limiting process to white noise case
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Final form of the Likelihood Ratio for known 
signal detection
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One can see that  is a monotonous function of 
correlation integral z, which can be calculated, using the 

received realization x(t)

Comparison of Likelihood Ratio  with threshold  is 
equivalent to a comparison of cor. int. z with 

corresponding threshold  z



Threshold for Correlation Integral

Condition 0)( lX  is equivalent to 0lnln l
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Synthesis of Optimal Signal Detector

• Likelihood Ratio

• Correlation Integral

• Correlation Receiver

• Comparison with threshold

• Decision Making

Threshold 
device

X(t)

s(t) zo

Correlator

z
z  zo YES

z < zo NO
Multiplier Integrator



Physical interpretation of correlation processing

Expected 
oscillations

Received  
oscillations

Result of 
multiplication 
s(t)x(t)

Correlation 
integral z



Thus, at the output of the correlator we have:
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Important! :         and         are random values. That is why 
exceeding (or non-exceeding) the threshold occurs with 
probabilities less than unity.
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Decision making rule:
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Target is present

Target is absent



• Probability density distribution of random 

value       (        in case A0 and           in 

case of A1) and the value            of the 

threshold  define the probabilities of 

correct and erroneous decisions 

• PDFs                   and  
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We need to know the variance 
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This variance      , derived by us, 
defines completely the curve 
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- detection parameter equals to SNR on 
voltage at the output of optimal detector.



Probabilities of Detection and False Alarm
Changing the threshold changes both D & F.

Operating characteristics of a radar detector – is a 
dependence D of F at given SNR q2=2E/N0



Probabilities of Detection and False alarm 
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Detection of a signal with a random 
initial phase

• At the output of the multiplier the amplitude will be 
proportional to the phase difference between phases of a 
signal x(t) and the reference voltage s(t), that is, a result of 
the multiplication is a random value.

• Two parallel channels are used in order to eliminate a 
randomness of changing output voltage, and the reference 
voltages in these channels are 90o phase-shifted.  



Detection of a signal with a random initial 
phase
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Probabilities of Detection and False Alarm

Situation PDF Note

A0 Rayleigh

A1
Generalized 
Rayleigh 
(Rice)
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Detection of a signal with random initial 
phase and amplitude

• This case corresponds to Model 3:

• Random quantity  is distributed by Rayleigh law

• Random quantity 0 – uniformly distributed

• Joint PDF (independent random quantities):

• Likelihood radio for known signal
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In order to find Likelihood Ratio for this case we 
must:

• Calculate energy of the signal as function of random 
amplitude E()

• Calculate correlation integral as function of  and 0 z(, 
0)

• Substitute these values into Ex. 

• Average the expression obtained over the random 
parameters  and 0

),,( 0 x
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Result

• The Likelihood Ratio for the signal with random 
initial phase and random amplitude is a 
monotonous function of MODULE value of 
correlation integral z similarly to the case when 
only initial phase is unknown.

• The structure of the detector for Model 3 is the 
same as for Model 2. Only optimal threshold is 
different.

• Method of calculating Probabilities of Detection 
and False Alarm is also similar.



Probabilities of Detection and False Alarm

Situation PDF Note

A0 Rayleigh

A1
At E=0 -
Rayleigh
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Плотности вероятностей корреляционного интеграла для сигнала со случайными
амплитудуми и начальными фазами.
При Е=0 имеем ситуацию А0 - сигнала нет. Тогда получается чистый Релей
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Относительные величины
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Detection Curves



Detection of a pulse packet (burst of pulses)
Coherent burst with known parameters

• Known burst can be considered as a 
completely known single signal of a 
complex shape, which is defined by the 
shape of a given packet of pulses. Model 5.

• It is a special case of the Model 1.

• All formulas obtained earlier are valid. But:

 dttsE )(2 
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
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i
iEE
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iE is energy of i-th pulse



The structure is the same (correlation receiver) but one 
should apply a reference copy of signal as the packet of 

pulses:  





N

k

tttAts
1

00 ])(cos[)()( 

Tttt  00,...,N00201 ...  

(integration from 0 to T)

Maximum value of the response will be at time 
T, in the moment of the end of the packet

All characteristics of detection will be the same as before, if the 
energy E is the energy of the whole packet of pulses (burst)



Detection of a pulse packet (burst of pulses)
A burst of pulses with amicable fluctuations

• In this case there are no fluctuations in the limits of the 
packet but impulse signals fluctuate from burst to 
burst. Model 6.2.

• That means that the amplitude of pulses in the burst is 
random (unknown), but it is the same for all pulses of 
given burst.

• Such signal can be considered as a single signal of 
complex shape with unknown amplitude. If initial phase 
is also random, we can reduce this case to the case of 
random amplitude and phase. (Again 2 quadrature channels)



Square 
Det

Square 
Det

Thresholder


T

o


T

o

2
2

2
1 zz 

2
1z

2
2z

1z

2z

)(tx

1U

2U

])(cos[)()( 00 kk tttAts   

z

0z

2/

In case of amicable fluctuations                   are related between 
themselves but unknown.

N ,...,1



Detection of a pulse packet (burst of pulses)
A burst of pulses with independent fluctuations

• In this case, the model of the signal is almost the same, but 
are fluctuated randomly and independently in the 

limits of the burst.

• For the k-th pulse, the likelihood ratio can be found similarly 
as for the single signal with random amplitude and phase

• At independent fluctuations of pulse amplitude, the likelihood 
ratio (LHR) for the whole signal can be represented as a 
product of LHRs for separate pulses
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A burst of pulses with independent fluctuations

• As a result of multiplication, there will be a sum of 
responses on each pulse of the packet in the index 
(exponent of power). In this case one should calculate 

• Similarly to the case of a single signal, the response          
will be proportional to the energy of the input signal, that 
is, the packet of pulses in particular case.

• The result should be compared with the threshold       .  0z
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Detection of signals with unknown 
arrival time

• If the time of signal arrival is unknown, the 
correlation integral is a function of the unknown 

time 

• It is necessary to apply a copy of the expected 
signal to the multiplier synchronously and in-
phase with receiving signal. But we do not know 
the time delay             in advance !!!

• So, we need many copies          that are shifted 
relative to each other by the interval, defined by 
the range resolution.
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• In case of random signals –
correspondingly quadrature structure.

• In fact, we have proceeded to the 
observation over time in the limits of 

td min … td max

• However, in addition to unknown time 
delay, it can be also an unknown Doppler 
shift.



Detection of signals with unknown 
frequency shift

• In this case, we should proceed also to the 
observation over Doppler frequency in the 

limits of Fv min … Fv max

• In other words, we can build multi-channel 
correlation schemes in time domain and in 
frequency domain

• For each k-th temporal channel many 
frequency channels can be created.
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• Number of channels:   n*m;    m=(tmax-tmin)/t; 

n=(Fmax-Fmin)/F;      t=2R/C;      F=2V/

• Correlation schemes of radar detectors 
require big number of channels in order to 
detect signal which arrive at different time 
(to scan all range from R min to R max).

• That is why in many cases it is preferable 
to use radio engineering devices which are 
invariant with respect to arrival time. 

• In this case we get a possibility to use a 
single-channel schemes of detectors 



Matched filters
• The notion of MF is based on the 

knowledge of linear radio engineering 
circuits or electrical circuits and signals.

• Response y(t) of a LF on the impact x at 
a point of time t is defined by Duhamel 
integral:

is pulse-response characteristic of 
the circuit (LF).
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Demand: the function y(t) should be equal to the CI z
to within a constant factor k0 at the point of time t=T , 
that is, at the time of finishing the useful signal, when  
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We can substitute t instead of 
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(Lower limit of int. can be 0 because signal s(t) begins in t=0)



Moreover, the condition 

is equivalent to 

)()( 0 tsktTh 

)()( 0 tTskth 

Proof:
; tT ; Tt

)()( 0   Tskh

Thus, the cross-correlation function at the 
time of the end of the useful signal is 
produced at the output of the linear filter with 
the impulse response, which is a mirror image 
of the desired signal (up to a constant factor).



Linear filters are described by impulse response and 
frequency response
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Formula of filtering in the time domain, or a convolution integral
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Formula of filtering in the frequency domain



Impulse response and frequency 
response are related by Fourier 

transforms
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Definition of Matched Filter in Radar

• Matched filter with respect to the expected signal is a 
filter that takes into account the shape of the signal 
and is capable to delivering on its output consistently 
over time the values   proportional to the correlation 
integral at different time delays of the signal.

• Math:

with C – factor of proportionality; T – delay in the filter itself.

• The farther the target, the greater the delay of the 
reflected signal, so, the response of the filter to the 
signal is later.

• The delay T in the filter itself is necessary to account 
all information that arrives during signal duration.

)()( tzCtTy 



Impulse response of a MF

Impulse response of a MF is constructed 
by mirroring the expected signal

)()( 0 tTskthMF 

T/2



Frequency response of a MF 
can be found from impulse response:

Change of variable t=T- leads to:


 dtetTskfK ftj

MF
2

0 )()(

fTj
xMF efSkfK 2*

0 )()( 

Frequency response of the matched filter is 
proportional to the product of the complex conjugate 
value of the spectral density of the expected signal 

and the factor of the signal delay in the filter



Amplitude-frequency characteristic of MF

)( fKMF)( fSx

f

)()( 0 fSkfK xMF 

corresponds to the amplitude-frequency 
spectrum of the signal



Phase-frequency characteristic of MF

fTfSfK xMF 2)(arg)(arg 

corresponds to the amplitude-frequency spectrum of the signal

• Phase response consists of two components:

- the argument of the function Sx
*(f), which is reverse in respect to 

the phase spectrum of the signal; 

- a phase factor e-j2fT. 

• The first one provides a summation of all frequency components 
'in phase', in the point of time T, when the signal is ended. 

• The second factor corresponds to the delay T in the filter. So, at 
time T there is a maximum value of the response, which is 

numerically equal to the signal energy.



• At the output of MF, the peak voltage of the signal DOES NOT 
DEPEND on the shape and bandwidth of the signal:

E – signal energy on the unity resistor

• Mean square of noise voltage (mean power )

N(f)=N0/2, if  -<f< .                                                 , so:

Thus:
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Peak SNR

It coincide with parameter of detection
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– coefficient of discrimination (required power 
SNR per single pulse); if losses are absent,  

(1)dscm q SNR 

But losses in real circuits and devices should be taken into account.



Coefficient of discrimination – the required SNR
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Sources of losses i

• Loss in detector 

• Detuning 

• Attenuation in Tx and Rx lines (2 dB)

• Loss in antenna (antenna pattern) (1.8 dB)

• Loss due to fluctuating target RCS

• Losses due to mismatch (quasi-optimal filter)

• CFAR loss (if any)

• MTI loss (if any)

• Losses related with operator (if any)

• Miscellaneous additional losses



Matched filter for a single video pulse

Signal

Action of delta-function on an integrator

A rectangular pulse is a difference of unit steps 
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Matched filter for a single RF pulse
Signal
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Quasi-optimal filtering

• In practice a quasi-optimal filters are often used.

• It can be done by optimization of  filter bandwidth

• In case of band-pass filter (rectangular)

f=1.37, and SNRmax=0.83q

that is, only 17 % will be lost (1.2 times)

f = B – Bandwidth of the receiver with quasi-optimal filter



Matched and Non Matched 
(Quasi-optimal) Filters

Input Pulse 
Shape

Filter Shape Optimum 
f·

Loss in 
SNR (dB)

Rectangular Rectangular 1.37 0.85

Rectangular Gaussian 0.72 0.49

Gaussian Rectangular 0.72 0.39

Gaussian Gaussian 0.44 0

Rectangular Single tuned circuit 0.4 0.88

Rectangular 2 cascaded tuned ccts 0.613 0.56

Rectangular 5 cascaded tuned ccts 0.672 0.5



Let’s go back to Matched Filter

• It can be shown that the amplitude of the signal at the 
output of MF determined the module value of the 
correlation integral.

• It is necessary at optimal detection of a signal with 
random initial phase (amplitude and phase).

• That is why, a MF for a signal with arbitrary amplitude 
and initial phase can be used for detection signals with 
any initial phases and amplitudes.



• In order to proceed from instantaneous values of voltage 
to the amplitude value, the structure of MF detector 
includes the envelope detector 

MF
Envelope 
Detector

)(tx
)(tz

To threshold 
or measuring 
device



Pulse Trains
The relationships developed earlier between q = SNR, D and F 

apply to a single pulse only.
As a search radar scans past a target, it will remain in the beam 

sufficiently long for more than one pulse to hit the target. The
number can be calculated using the following formula:

where nb – Hits per scan
 – Azimuth beamwidth (deg)
A – Azimuth scan rate (deg/s)
m – Azimuth scan rate (rpm)

For a long-range ground based radar with an azimuth beamwidth of 
1.5, a scan rate of 5rpm, and a pulse repetition frequency of 30Hz,
the number of pulses returned from a single point target is 15.

The process of summing all these hits is called integration, and it 
can be achieved in many ways.
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MF for packets of pulses

• Coherent burst

– MF for coherent burst of equal rectangular pulses

– What will happen, if MF is substituted by quasi-optimal one?

– What we should do, if the envelope of the packet is not 
rectangular?



MF for packets of pulses

• Non-coherent burst

– Weighted postdetection integration

– Week non-fluctuated packet (square detector) 

Ki=Ai
2

– Non-fluctuated packet of big amplitude Ki=Ai

– Fluctuating packet
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Effect of Integration 
on PDF’s

Note that though the mean 
values of both the Noise and 
Signal+Noise remain unchanged, 
the variance decreases
This results in a reduction of the 
required single pulse SNR, or mdisc

to achieve a particular D and F

Decreasing 
SNR



Comparison of coherent and non-
coherent integration

MF
Coherent 
integrator
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Real Integration Efficiency

With integration, the required SNR decreases as a 
function of the number of samples integrated

However as the single pulse SNR decreases, detector 
losses increase which result in reduced integration 
efficiency

where: Ei(n) – Integration efficiency

SNR(1) – Single pulse SNR required to produce a specific Pd if 
there is no integration.

SNR(n) – Single pulse SNR required to produce a specific Pd if 
n pulses are integrated perfectly.
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In case of incoherent 
integration  

n
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The improvement in SNR if n pulses 
are integrated post detection is 
nEi(n). This is also the effective 
number of pulses integrated

nEi(n) ≈ n0.8

Note:
Pd=D



Integration Loss

Note:
Pd=D



Digital Processing

• Considered general theory is completely suitable 
for both analog and digital signal processing.

• However the Filter itself normally is synthesized 
on the basis of spectral approach using FFT.

• MF should deliver at the output, a signal 
correspondent to correlation integral. So, the 
algorithm can be built in accordance with the 
following diagram. 



ADC

ADC

FFT Multiplier IFFT
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Sequence of complex samples
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Sequence of spectral 
coefficients 
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random phase



Universal filter with tapped-delay line
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Compression of wideband signals

• We could see that MF distorts the shape of the signals but 
maximizes SNR.

• In case of WB signals the distortion leads to USEFUL 
EFFECT of COMPRESSION.

• It will be considered in separate topic.



Features of requirements to F and D

1. First feature is related with Great number of resolution 
volumes

2. Second feature is related with Cyclicity (recurrence) of 
surveillance



Influence of number of resolution 
volumes

• If there is m RVs, then aggregate conditional 

probability of Correct Undetection in m volumes is

• Expand into a Taylor series
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Influence of cyclicity (recurrence) of surveillance

• Suppose that optimal signal processing within the 
cycle of observation is supplemented by the 
intercycle processing according to logics “1 of k”.

D grows quickly if at increasing k!
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False Alarm Rate

Another important concept in detection is FAR,

False Alarm Rate.  FAR is the number of times a false alarm is 
expected to occur per second.

It depends on the F and the number of tests per second. 
Stated mathematically:

Note: a test could be a scan, a dwell, etc.

ond) tests/secof(number FFAR 



False Alarm Rate Stabilization

It is desirable that the system automatically 
adjusts its S/I threshold when there is widely 
varying interference (e.g., ground clutter). Then 
the FAR stays constant.

This process is called Constant False Alarm Rate 
(CFAR), and it is used majority of modern 
radars.



Constant False Alarm Rate

• As was shown, the false alarm rate is very sensitive to the 
detection threshold voltage.

• Component aging and changes in background mean that a fixed 
detection threshold is not practical.

• Adaptive techniques that maintain a constant false alarm rate 
irrespective of the circumstances are called Constant False Alarm 
Rate (CFAR) processors.

• For aircraft this is not a problem as the area around the target is 
generally clear, and good background statistics can be obtained.

• For ground targets where the background is determined from 
clutter statistics, the terrain may not be homogeneous, and so 
additional processing is required.



Change the threshold to keep False Alarm 
Rate CONSTANT



Constant False Alarm Rate (CFAR)

There are two common methods to achieve CFAR: Cell 
Averaging and Clutter Mapping.

Cell Averaging

When a running average is made of the range cells before and 
after the cell of interest. This running average is then 
multiplied by some factor and used as the threshold.



Cell Averaging CFAR Options

Area CFAR used in imaging or 
scanning systems

Range CFAR used by pencil beam 
radars

Azimuth CFAR perimeter protection 
radar



CFAR losses

• CFAR losses decrease with the number of cells 
used from 3.5dB for 10cells to 0.7dB for 40cells

• CFAR losses decrease with pulses integrated for a 
10cell average with 10 pulses integrated it is 0.7dB 
decreasing to 0.3dB for 100 pulses 



CFAR. Cell Averaging

Averager

Radar data 
clocked in 

Multiplier

Cell of 
Interest

Comparitor

Output

Comparator



Compensating for Non Homogeneous Clutter

CA=cell averaging
GO=Greater of
SO=Smallest of



Detection on the background of 
non-Gaussian interferences

• For example, stationary nonwhite noise. It is characterized by 

nonuniform spectrum N(f).

• In this case instead MF we can introduce the notion of 
OPTIMUM filter, which takes into account not only 
characteristics of the signal, but characteristics of noise as well.

• Earlier: N(f)=N0=const

• Now: N(f) – is arbitrary function



Frequency response of the 
OPTIMAL FILTER

Matched Filter is a special case of the 
Optimum Filter at N(f)=const
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Physical interpretation of optimal filtering

• Optimal filter can be represented as a cascade 
connection of two “partial” filters:

• The first one makes the noise to become white 
(“whitewashing” filter), and the second one is 
matched with the signal, converted by the first filter.

• Optimal frequency response                      .

• It is “whitewashing” noise, suppressing spectral 
components with great spectral densities of noise.
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A priori uncertainty

• Two classes of the prior uncertainty:

– Parametric

A model of PDFs of signals                  and 
interferences               are known; just parameters       
and        are unknown (vectors)

– Nonparametric

Models of PDFs              and                 are unknown.

This is the most difficult case, but normally 
something is known (not complete uncertainty, but 
partial uncertainty) 
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Approaches to overcome a priori uncertainty

• Bayesian approach

– Strictly Bayesian

– Partially Bayesian

• Non-Bayesian parametric methods

• Non-parametric methods

– Sign algorithms

– Rank algorithms

• Adaptive optimal algorithms

• Adaptive non-optimal algorithms (Robust)



Bayesian approach
• Suppose that unknown parameters     and      

of PDFs            and            can be interpreted as random values, and 
their PDFs are exist.

For signal and noise            and            are considered as
CONDITIONAL PDFs:

and                         - vectors

• Then two statements of the problem are possible.

• Strictly Bayesian: PDFs            and            are known.

in this case we can write joint PDFs and PDFs for signal and 
noise:
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• There are no unknown parameters anymore. We have come to 
the problem with completely known distributions. Now it is 
possible to synthesize optimal detection algorithm.

• There are no principal difficulties but computing difficulties can 
be very significant.
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• Partially Bayesian: PDFs            and            are 
unknown.

• We can apply, for example Bayesian postulate  
that a priori distributions are uniform distributions.

• This supposition characterize the maximum prior 
uncertainty relative to parameters         and       .  

• Minimax! 
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Non-Bayesian parametric methods

• These are all those parametric methods that do 
not require Bayesian suppositions relative to 
unknown parameters       and      of distributions 
for signals               and noise              .

• One of the approaches consists in substitution 
into these distributions, instead of unknown 
parameters       and      , their estimates     and    .

• The estimates should be obtained using data of 
observation.

• Thus, this approach leads to adaptive algorithms.
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Non-parametric methods
• These class of methods is applied to overcome 

non-parametric prior uncertainty. The basis –
non-parametric methods of math statistics.

• Concrete applications are related basically with 
using SIGN and RANK statistics, which have 
some invariant properties.

• Let us                                           is initial 
sequence of observed values.

• Sign Statistics is a vector:  
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It appears that distribution of value signx is invariant in respect to 

initial distribution of receiving signal X independently on p(X)
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Based on this property, the algorithms are designed that operate
with sign functions instead of initial signals. Of course the quality is 
worse than in case of parametric uncertainty.



• Rank Statistics. In this case the observed values

are arranged in the order of increasing.

Then instead of values X, we use the numbers of 
corresponding components in variational series 
(Ranks).

Invariant properties of rank statistics are even 
stronger than in previous case.
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Robust approach

• Robust (stable) algorithms are build without evident 
estimating of non-informative       and      parameters.  


